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Abstract

The University of Michigan Direct Brain Interface (UM-DBProject seeks to detect voluntarily produced electrocatti
activity (ECoG) related to actual or imagined movements umhns as the basis for a DBI. In past work we have used cross-
correlation based template matching (CCTM) to detect exaated potentials (ERPS). This paper focuses on sigraictien
methods that exploit event-related changes in EQo®er spectra, signal characteristics that are ignored by the CCTM approa
We propose two new detectors based on covariance (autesagre models. The first, which we call the quadratic detedso
a classic fixed interval or window based likelihood ratioedtor. The second, which we call the change-point detettos,
more sophisticated version of the quadratic detector thmnates the event time. Model order was chosen by applyiagBiC
criterion. Comparison of detection accuracy and respoimse for the CCTM, a basic feature-based band-power (BP) adeth
the quadratic detector and the change-point detector shtine¢ the CCTM has the poorest performance, the quadratscide

and the BP have similar performance, and the change-potpedarms all three.

I. INTRODUCTION

direct brain interface is an interface that accepts volyntammands directly from the human brain (without requgrin
A physical movement) to operate a computer or other assitisienology. The University of Michigan Direct Brain
Interface (UM-DBI) project has focused on the detection oluntarily produced event-related changes in electrozmgtam
(ECoG) from subdural implanted electrodes. The short-tgoal is an interface that is capable of operating singldéetwi
assistive technologies. Longer-term goals are to incr&€a3eaccuracy and the number of useable control channelsldw al
operation of more complex tasks.
In past work we used the cross-correlation based templatiehmg (CCTM) method to detect event-related potentiaRHE)

[1]-[3]. However CCTM ignores event-related changes indigmal power spectrum, such as event-related desynclat@mz
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(ERD) and event-related synchronization (ERS) [4]. Povpactum changes have been the basis for detection methtius wi
electroencephalogram (EEG.4., [4]-[6]) and ECoG, €.9g., [7]-[9)]).

Most detection methods that exploit spectral changes haea llesigned using feature-based strategy, which identifies
one or more relevant spectral features and then appliestardelased classifier such as linear discriminant ana(y£i\)
or a neural networke.g., [4], [6], [8]. One such method, the band power (BP) methddvhich extracts the signal power in
certain subject-dependent spectral bands is describeddtio8 II-E and used for comparison purposes.

While feature-based methods can be appealing for theiregminal simplicity, it is difficult to establish optimalityooditions
for such methods. Instead, we focus here omael-based approach in which we first postulate a signal model that is
designed to capture key signal characteristics, and theel@®a corresponding “optimal” detector based on that rhddg
course, the optimality of the detector hinges on the acguohthe model, and all models for biological signals are infipet.
Nevertheless, in a model-based approach the underlyingrgg®ns are made explicit at the outset, rather than beithdehn
implicitly inside a feature extractor or neural network.i§ kransparency can facilitate generalizations to newasitas, such
as multi-channel detection or variations in the signal abgaristics of interest. For example, we have developedvavsions
of our model-based detector, the quadratic detector, wiggs not recognize the event time and the change-point gtiadr

detector, which does.

Il. METHODS
A. Data Collection

The data used for this analysis came from patients in theegpil surgery programs at the UM Health System in Ann
Arbor and the Henry Ford Hospital in Detroit who were beirgpted for intractable epilepsy. ECoG was recorded from up to
126 subdural electrodes that had been implanted on thecsuofathe cerebral cortex of each patient for the sole purpbse
recording seizure activity and mapping cortical functidohe 4 mm diameter electrodes were arranged in grids or skiiis
a center-to-center distance of 1 cm. Electrode placemestsekected solely for the purpose of epilepsy monitorindneit
regard for this research, and electrodes were not nedgdsaated over motor cortex. Due to time constraints in thegital
environment, each subject performed sets of about 50 tepetiof a simple movement. The movements were self-paced
(unprompted) and spaced roughly five seconds apart. To@onéfbline analysis for algorithm development, actual moeats
(instead of preferred motor imagery) were used so that thegponding muscle activity recorded by electromyogra@iWG)
electrodes could be used as the “ground truth” reference. HMG onset provided a “trigger”, the only labeled instant fo
each event. Most of the data was collected at a sampling fa&26@Hz, with some at 400 Hz.

Twenty datasets from 10 subjects, consisting of a total &42dhannels were used for the study. These channels included
data from many areas of the brain, some of which were uniktatéhe action performed. All 2184 channels were used for the
comparison of the detection methods. For algorithm opttiin, however, we selected a subset of 233 “interestinghoils.
Interesting channels were defined as the channels for whighofithe detection methods considered had an HF-difference
(our performance metric, described in Section 1I-B) gre#éttean 70 for either the training or testing data, indicatihgt the

channel contained brain activity related to the action qrened.
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For simplicity, in this study we focused on detecting evesiated changes in ECoG recorded from a single electrodenetha

The extension of the methods to multiple channels will besabgred in future work.

B. Event Detection in Unprompted Experiments

Unprompted subject actions produce a realistic, but chgiiey detection task analogous to the manner in which a ctenpu
input device is expected to operate. The asynchronousenatuevent detection when the event timing is self-paded, (
user-paced) presents a challenge for any detection digariVhile some labeling is provided for the training data ttirs
case, the triggers indicating EMG onset), the test datatisebnunlabeled and any sample could correspond to an event

The task of a detection method is to identify the detectioimgpthat is, the points that correspond to the user’s inti@n
activate the interface. However, changes in brain actirgtgted to initiation and performance of the action occuhblmefore
and after the trigger point, so the algorithm is not requiteddentify this point precisely. Instead, we define an expeéc
response window around the trigger point labeling each tesad accept any detection point occurring within the exgubct
response window as a valid detection (hit’). The length e £xpected response window after each EMG trigger specifies
the maximum allowed delay between the actual occurrence @vant and its detection.

A detection point is defined when the decision feature preduzy a method rises above a detection threshold, selected
using the training data. A hysteresis thresholding apgrasaised in which no further detections are then reported tinat
decision feature falls below a lower threshold, which is teethe mean of the decision feature over the training data. We
determine the detection threshold (the upper hysteresistibld) empirically from the training data so as to maxandr
performance metric, the “HF-difference,g., the difference between the “hit” percentage and the “fadsgection percentage.
The hit percentage is the percentage of events that weretdédtwithin the expected response window. The false detecti
percentage is the percentage of the detection points expbst the method that were falsee( not hits).

In all cases, we used the ECoG containing the first half (Bipic25 out of 50 available repetitions) of the events for
algorithm training, and the remaining ECoG for testing. \&part the HF-difference for the test data because a cla$3@@

evaluation is infeasible due to the use of unprompted ewemdsincompletely labeled data.

C. CCTM Approach - Modeling the Mean

Initially, the UM-DBI project used the CCTM method for sigrdetection [1]-[3]. Briefly, the CCTM method calculates an
ERP template from the training data using triggered aveagbee Fig. 1 of [1] for examples of ECoG signals and ECoG
templates. The decision feature is formed by cross-cdmegldhat ERP template with the ECoG of the test data. For this
comparison, detection points are identified using the hgsie threshold, though historically other thresholdtsgies have
been usee.g., [2]. The CCTM method is the only method in this comparisaat #xplicitly includes ECoG after the detection
point in the identification of the detection poiritg a significant portion of the ERP template energy occurs wigdr ghe
trigger). Elimination of the undesirable delay that thisis@s was one of the design criteria for the model-based mietho
presented here.

While the CCTM approach was not developed as a model-bas#tbthet is equivalent to a likelihood ratio test under a

simple two-hypothesis statistical detection model [1&uasing signal buried in white noise. Letdenote one block of ECoG
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data and suppose thatarises from one of the following pair of hypotheses:

Hy: x ~ N(0,0*I)  “rest state”
1)

Hy: x~ N(u,o’I) “event state,”

wherep denotes the ERP template? is the noise variance, anbl denotes the identity matrix. For this model, the Neyman-
Pearson optimal detector, formed from the likelihood raisothe inner product’u, where thex’ denotesz transpose. In
practice we must choose between rest and event states hanjcss, but at each time point, so we slide the signal bleck

along the ECoG data one point at a time, applying the tempdagsach block and producing the CCTM decision feature.

D. Power Spectrum Changes

The “white noise” signal model (1) ignores the well docuneehevent-related changes in the signal power spectrum of
EEG that are also seen in ECoG. For example, Fig. 1 shows angrevindow power spectrum with a window size of
200 ms computed by fitting a 4th-order AR model to 51 eventn thormalizing by subtracting a baseline power spectrum
(corresponding to timeé = —3 seconds relative to the trigger). The power spectrum clasgmificantly near event onset.
The proximity of the spectral changes to the trigger timseaaithe hope of reduced detection delay. Further, Fig. 1 rivay g
some indication that spectral changes may begin beforeritpget time. Further, such spectral changes are visible éve

moving window power spectra from individual events as shawFig. 2.

E. Bandpower (BP) method

Power values in specific frequency bands are one of the sthndathods for extracting features describing oscillatory
activity [11]. An additional advantage of using bandpoweethiat oscillatory activity in specific frequency bands iscasated
with specific cognitive or mental tasks in well-known braireas [12]. Although we do not present such a spatio-temporal
analysis here, we employed bandpower as a “feature-bagpgidach with which to compare the results of our model-based
approaches. Bandpower features were extracted by filtehieglata with Butterworth filters of 4th order for the followi
frequency bands: 0-4, 4-8, 8-10, 10-12, 8-12, 10-14, 1620434, 65-80, 80-100, 100-150, 150-200, 100-200 Hz. The las
three bands were used only for datasets having a sampliegofat00Hz. The filtered signals were squared and smoothed
by either a 0.75 or 0.5 seconds moving average filter. Therlaths used for frequency bands in the gamma range. The
signals were linearly combined by an evolutionary algaonitto produce the decision feature. An advantage of this @mbres
that state labels are not needed for training. The evolatipalgorithm uses the HF-difference directly to optimike tinear

combination on the training set (See [7] for details).

F. Covariance Signal Model and Quadratic Detector

The quadratic detector [10] was developed as an alternttiy€) that accounts for power spectra changes. We now assume

that each ECoG signal block arises from one of the following two states:

Hy: = ~ N(0, Ky) “rest state”
(2)
Hy: ~N(0,K;) “event state,”
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where we ignore the ERP componautfor simplicity. By the Neyman Pearson lemma, the most powedst for such a
detection problem is given by the likelihood ratio. Undee tmodel (2), the likelihood ratio simplifies (to within ireslant
constants) to the following quadratic form:

Az) =2/ (K;' — Kz (3)

We slide the signal block along the ECoG data to form the dmtiteature signal, and then identify the detection poirsts a
described in Section II-B.

1) Training: The covariance matriceK, and K; in (2) are unknowra priori, so one must estimate them from training
data. If the length of the signal block is, say, 100 samplesiesponding to 0.5 seconds of ECoG data, then each cogarian
matrix is 100 x 100. This would be too many parameters to estimate from limitathing data. Therefore, we assumeth
order autoregressive (AR) parametric model for the sigoalgy spectrum as follows:

p
zn] = = ) aglmlafn —m] + u[n], 4)
m=1
wheren > p, ¢ = 0,1 (each state) and

u[n] ~ N(O,crg).

As usual, we assume that thgn] are independent and identically distributed (i.i.d.). $haw, and o2 fully describe the rest
state whilea; ando? fully describe the event state.

We used the Schwarz information criterion (BIC) [13] to ckeanodel order. This is similar to AIC (Akaike’s Information
Criterion) [13] but penalizes the number of parameters arttodel more heavily. The distribution of “interesting” cinels
among best BIC model order estimates are shown in Fig. 3.

As can be seen from the histograms, the estimated best modkisausing BIC for the 200 Hz and 400 Hz datasets are 3
and 4 respectively. In order to have a common model order, seelp = 4 for all datasets. For a 4th order AR model, we
must estimate 4 AR coeffecients and a driving noise varia:rjcéor each of the two signal states, for a total of 10 unknown
parameters.

If each ECoG training data sample point were labeled as aprfiom a “rest” or “event” state, then it would be
straightforward to find the maximum-likelihood (ML) estitea of the AR coefficients and driving noise variances using
the Yule-Walker equations ( [14], section 5.4). However, BCoG experiments are unprompted and only a single timarihst
is labeled for each event. This incompletely labeled ECota damplicates the training process. To “label” our tragndata
for the purposes of estimating the AR model parameters, wa& estimate which ECoG signal samples correspond to which
state.

For labeling purposes, we assume that the brain is in thentéwtate for some (unknown) period before and after each
EMG trigger. We parameterize these event-state intervsilsgua variablew that describes the width of the interval around
each trigger where the signal is assumed to be “event” statda variable: that describes the relative location of the center
of each event-state interval relative to each EMG triggaetpoint. We assume that the remainder of the training ddtage

to the “rest” state.
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Fig. 4 illustrates how we label the training data, whétg (c, w) denotes the number of samples in #té block under
hypothesisg, and z, x[n; ¢, w] indicates thenth data sample in théth data block under hypothesis By construction,

M i (c, w) = w.

With this model we construct a joint probability density &tion for training data by adapting the procedure in [14]eTh

AR parametersiy anda; represent the rest and event states.

. 2 2 -
lOg p(wl,ka wO,kaVkv a,0q,Q0,0(,C, U)) ~

1
— 57 D uf j[n; ¢, w)
1 k=1 n=p+1
1 K Mok (c,w)
—5m ). D ubmicw] 5)
0 p—1 n=p+1
K-1
- Z (M i (c,w) — p)log \/2m0?
k=1
K
=D _(Mox(c,w) = p)log /2703,
k=1

where forq =0, 1:

P
Ug k[0 ¢, W] £ 24 k[0 0, w] + Z ag[mlzg.xln — m;c,w).

m=1
The approximation in (5) is reasonable whf, i (c, w) is large relative to the model order. Based on this model, sesau
joint ML estimation procedure to estimate simultaneoubly AR parameters and the centeand widthw of the event-state

interval as follows:

(¢,w) =argmax max
c,w (11,0’%,(10,0[2) (6)

. 2 2
1Og p(ml,ka wO,k7Vk7 a,o0y,a0,0,C, ’U}) .

This joint labeling/training procedure requires an itex@search over the centeand widthw parameters (outer maximization).
To conserve processing time we have specified a maximum ofr&tibns. The inner maximization has simple analytical
solutions based on modified Yule-Walker equations ( [14dtiea 5.4, equation 5.22) to find the AR parameters. Fig. Svsho

an example of the spectra computed from estimated AR paeasedrresponding to the rest and event states.

2) quadratic detector implementation: Direct implemention of the quadratic detector (3) would hefficient due to the

large matrix sizes. Fortunately, for AR signal models one icaplement (3) using simple FIR filters:

A(x) = Ao(z) — A (), (7)
where
sl & )
Aq(w):; Z uq[n] I q:O,l,
9 n=p+1
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and where the innovation signals are defined by
p
ugln] £ afn] + 3 agmleln — m). (®)
m=1

The block diagram in Fig. 6 summarizes the implementatiothefquadratic detector (7) and a Matlab implementation is
given in the Appendix. The ECoG signal is passed in pardil@ugh two FIR filters, each the inverse of the correspondiRg
model. The output of the filters is squared and normalizecheyML estimates of the driving variances. Next, the diffeen
operation in essence compares “which model fits better.s Thifollowed by the calculation of a moving average of length
2/3 secondsife. 133 and 267 samples at 200 Hz and 400 Hz respectively). Thrubistthe decision feature that is compared
to a threshold as described in Section II-B.

Fig. 7 illustrates how the variance of the innovations psscevorks as a decision feature by plotting individually the
normalized variance of innovations,(x) (“rest state”) andA;(x) (“event state”). Near the trigger point the signal power
spectrum becomes that of the event state, so the event stadmae of innovations decreases whereas the rest statémcar

of innovations rises, leading to a large decision featutae/a

G. Change-Point Detector

The quadratic detector does not recognize that the evemtt@feist occurs at a particular time. The change-point tlatec
based on a body of work in the statistics and control engingéditerature [15], builds on the quadratic detector asofgs.

We introduce the change point timeand an alternative hypothest,;: that Hy (the null hypothesis in (2)) holds up to
and including discrete timg¢ — 1 and thenH; (the event hypotheses in (2)) holds. Consider testing aesemguof hypothesis
H, against the alternative hypothedis;. For a giveny, the likelihood ratio test (LRT) statistic for testing, versusH;

turns out to be

wheres,, is an “instantaneous” likelihood ratio given by

2 2 2
@ U’O,n ul,n

1 |
Sy, = —1In —,
2 a% 208 20%

wherew, ,, = u4[n], ¢ = 0,1 is defined in (8). (See section 2.2 of [15] for this result inimmer setting, and section 8.3
of [15] for the autoregressive version needed here.)

But the change point timg is unknown and we estimate it by maximum likelihood as

5 k
T.=7 = arg.maxlgjngj

Then the change-point statistic is defined by
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k k
S} = maxlgjngj

Note thatSJ’? is a cumulative sum of “instantaneous” likelihood ratiosking this a CUSUM test [15]. Finally then, the test
is: rejectH, the first timek that

maxlsjngf Z h

whereh is the fixed threshold. 1, is not rejected by the time a prespecified window of data isgseedi(e. k£ = ki)
then it is accepted.

The block diagram in Fig. 8 summarizes the implementatiothefchange-point detector and a Matlab implementation is
given in the Appendix. Similar to the quadratic detectog EC0G signal is passed in parallel through two FIR filterghea
the inverse of the corresponding AR model. The outputs offittezs are squared and normalized by the ML estimates of the
driving variances. The difference of the resulting outpsitadded to the logarithm of the ratio of the standard demiati This
is followed by the maximization of a sequence of moving sunith Vengths from (model order + 1) samplesig,. which
was set to 2/3 seconds ( e.g. moving sum lengths for the maation at 200Hz are 5, 6, .... , 133 samples where each sample
corresponds to 0.005 seconds). The output of the maxirmizasi the decision feature, which is compared to a thresheld a

described in Section II-B.

IIl. RESULTS

We calculated the performance of the CCTM, BP, quadratieaiet and change-point methods for all 2184 channels from
the 20 datasets and compared the number of channels at vatiewifference levels. The HF-differences for each chhnne
were calculated for expected response windows that st@riedecond before the triggers and ended 1 second, 0.5 second
0.25 second after the triggers. The change-point, quaddatiector, and BP methods all produced better detectiam tthe
CCTM. As the maximum allowed delay was reduced, the numbeahahnels at each HF-difference level decreased. Fig. 9
compares the performance of the change-point, quadratéctde, BP and CCTM detectors when the delay is constrained t
be at most 1 second by comparing the number of channels atHfadifference level. Fig. 10 shows the 0.5 second delay
case. The effect of changing the maximum allowed delay ferghadratic detector and change-point detection methas ar

shown in Fig. 11 and Fig. 12 respectively.

IV. DISCUSSION

The change-point and quadratic detector methods detent-esfated changes in ECoG based on a two-covariance signal
model that captures event-related changes in the ECoG pgpeetrum. Both have a simple implementation that is swetabl
for real-time use. The change-point is an extension of tredratic detector and estimates the change-point time athwthie
event of interest occurs.

The results showed that both the quadratic detector andyehpoint offer improved detection accuracy relative to@&ETM
method and can provide reduced detection delay. The BP whetlso offers improved detection accuracy relative to th@RC

method, confirming that capturing spectral changes in teasiis important for detection.
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TABLE |
THE NUMBER OF SUBJECTACTION COMBINATIONS (AND NUMBER OF SUBJECT$ AT EACH HF-DIFFERENCE LEVEL FOR THEBP, QUADRATIC DETECTOR
(QD), AND CHANGE-POINT(CP)METHODS.

max 0.25 sec afte max 0.5 sec after max 1 sec after
HF > || BP | QD | CP BP QD CP BP QD CP
50 3(3) | 3(3) | 6(5) || 13(8) | 12(9) | 13(9) || 17(10) | 17(9) | 17(9)
70 1) | 1(1) | 3(3) || 7(5) | 7(5) | 8(6) 12(8) | 13(9) | 12(9)
90 1(1) | 1(1) | 1(2) || 2(1) | 1(1) | 3(2) 8(5) 5(4) | 7(5)

While the number of channels at different levels of detect®interesting, the number of subject/action combinatiand
the number of subjects) at each detection level is also itapbrThe subjects represent people who could benefit from a
DBI, while each subject/action combination represents teng@lly independent DBI output. The 20 datasets on whidsé
methods were tested contain 19 subject/action combiratiom 10 subjects. As can be seen from Table I, the BP and gtiedr
detector methods have comparable numbers of subjectiactimbinations (and number of subjects) at each HF-diffaxen
level. The change-point method produces comparable didigéon combinations for the 1 sec delay case. HowevertHer
preferred shorter maximum delays, the change-point megbhoduces more subject/action combinations in more subjbein
the BP and quadratic detector methods.

There are several modifications to the quadratic detectbchange-point models that may improve these detectionadsth
First, the current quadratic detector and change-pointatsoidnore the ERP component (upon which the CCTM is based).
Integrating the mean into the model would potentially cegtooth the temporal and spectral event-related charstitsrand
produce improved detection accuracy. Second, the liketihatio is optimal for prompted experiments with a predeteed
block of data, but is not necessarily optimal when appliethvai sliding window, as required by our unprompted data. It
would be desirable to develop “optimal” detectors for unppbed experiments. Third, time-varying modedsy(, state-space
or hidden Markov methods) might better capture how the spkeptoperties evolve over time [5]. Fourth, the power spect
shown in Fig. 1-2 suggest that there are at least three dig@ts of spectral characteristics. Training individuetedtors for
each set of characteristics may produce more accuratetidetéican lumping them into just an event and a rest stateallyin
extensions to multi-channel detection are also under deraiion. Combining information from multiple channelsymze
especially relevant for the change-point method, becalisecombined information from several channels (even ondéls wi

HF-differences around 50) could produce accurate detectio
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VI. APPENDIX

ow.

Input and Output

Inputs:

ECoGdata: The ECoG data for testing

sigma0:  Variance for rest class

HO: Model Coefficients for the rest
class
sigmal:  Variance for event class

H: Model Coefficients for the event
class

k_max: the width (or maximum width for
the change-point method) of the
moving average (or sum for the
change-point method) filter

(2/3 second in samples)
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% model_order: the model order (4)

% Output:

% feature: the decision feature.

B. Matlab Implementation of Feature Extraction for the Quadratic Detector

function[feature]=quad_feature(ECoGdata, HO,

sigma0, H1, sigmal, k_max)

e0 = filter( HO, 1, ECoGdata );
el = filter( H1, 1, ECoGdata );

feature = filter(ones( 1, k_max) / k_max,

1, e0 .” 2 / sigma0 - el .© 2 / sigmal);

C. Matlab Implementation of Feature Extraction for the Change Point Quadratic Detector

function[feature]=changepoint_feature
(ECoGdata, HO, sigma0O, H1, sigmal,

k_max, model_order)

e0
el

filter( HO, 1, ECoGdata );
filter( H1, 1, ECoGdata );

s = 0.5 * log( sigma0 / sigmal )
+e0 . 2/ 2/ sigma0
-el ” 2/ 2/ sigmal;

feature=filter(ones(1, model_order +1), 1, s);

for m_order = (model_order + 2) : 1 : k_max
test_feature=filter(ones(1, m_order),1,s);
feature = max(feature, test_feature);

end

11
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Figure Captions

Figure 1: Power spectrum changes relative to the spectrum=at 3 seconds, averaged across 51 events. Time) is the EMG trigger

time.

Figure 2: Power spectrum changes for individual events.

Figure 3: Histograms of estimated best model orders forastang channels using the BIC criterion. A) 200 Hz channB)s400 Hz

channels.

Figure 4: Training data with — 1 events.

Figure 5: Frequency responses for each state construacieddstimated AR parameters.

Figure 6: Quadratic detector implementation.

Figure 7: The average of the variance of innovations for #& and event states around the trigger points.

Figure 8: Change-point detector implementation.

Figure 9: The number of channels at each HF-difference lfarethe CCTM, BP, quadratic detector, and change-point outhwith

maximum allowed delay of 1 second.

Figure 10: The number of channels at each HF-differencd fevehe CCTM, BP, quadratic detector, and change-pointhaast with

maximum allowed delay of 0.5 second.

Figure 11: Quadratic detector performance at differing imaxn allowed delays.

Figure 12: Change-point detector performance at differmaximum allowed delays.
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Fig. 12.
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